

Capteur de courant LA 200-P

Pour la mesure électronique des courants : DC, AC, Impulsionnels..., avec une isolation galvanique entre le circuit primaire (courant fort) et le circuit secondaire (circuit électronique).

Χ

Caractéristiques électriques principales

I _{PN}	Courant primaire efficace nominal			200			Α
I _P	Courant primaire, plage de mesure			0 ± 300			Α
$\dot{\mathbf{R}}_{\mathrm{M}}$	Résistance de mesure @		$T_{A} =$	$_{A} = 70^{\circ}C \mid T$		$T_A = 85^{\circ}C$	
			\mathbf{R}_{Mmin}	$\mathbf{R}_{\mathrm{Mmax}}$	R _{M min}		
	avec ± 12 V	$@ \pm 200 A_{max}$	0	30	0	26	Ω
		@ $\pm 250 A_{max}$	0	8	0	4	Ω
	avec ± 15 V	@ $\pm 200 A_{max}$	0	60	0	56	Ω
		$@ \pm 300 \text{ A}_{max}$	0	12	0	8	Ω
I _{SN}	Courant secondaire efficace nominal			100)		mΑ
K _N	Rapport de transformation			1:2000			
\mathbf{V}_{c}	Tension d'alimentation (± 5 %)			± 12 15			V
I _C	Courant de consommation			16(@±15V)+ I _s m			mΑ
V _d	Tension efficace d'essai diélectrique, 50 Hz, 1 mn		1 mn	3			kV

Précision - Performances dynamiques

Précision @ I_{PN} , $T_{A} = 25$ °C

	@ ±	12 15 V (± 5 %)	± 0.65		%
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linéarité		< 0.15		%
			Тур	Max	
I _o	Courant de décalage @ $I_p = 0$, $T_A =$: 25°C		± 0.20	mΑ
I _{OM}	Courant résiduel 1) @ I _P = 0, après un	e surintensité de 3x I _{PN}		± 0.25	mΑ
I _{OT}	Dérive en température de I _o	0°C + 70°C		± 0.25	mΑ
	-	- 25°C + 85°C	± 0.10	± 0.30	mΑ
t _{ra}	Temps de réaction @ 10 % de I _{P m}	ax	< 500		ns
t _r	Temps de retard 2) 3) @ 90 % de I _{Pn}	nax	< 1		μs
di/dt	di/dt correctement suivi 3)		> 200		A/µs
f	Bande passante 3) (- 1 dB)		DC 1	100	kHz

@ ± 15 V (± 5 %)

Caractéristiques générales

Température ambiante de service		- 25 + 85	°C
Température ambiante de stockage		- 40 + 90	°C
Résistance bobine secondaire @	$T_A = 70^{\circ}C$	76	Ω
	$T_A = 85^{\circ}C$	80	Ω
Masse		40	g
Normes 4)		EN 50178	
	Température ambiante de stockage Résistance bobine secondaire @ Masse	Température ambiante de stockage Résistance bobine secondaire @ $T_A = 70^{\circ}\text{C}$ $T_A = 85^{\circ}\text{C}$ Masse	Température ambiante de stockage $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

Notes: 1) Conséquence du champ coercitif des éléments magnétiques

- 2) Avec un di/dt de 100 A/µs
- 3) Le conducteur primaire remplit bien le trou de passage et/ou se referme au dessus du capteur
- ⁴⁾ Une liste des essais correspondants est disponible sur demande

$I_{PN} = 200 A$

Généralités

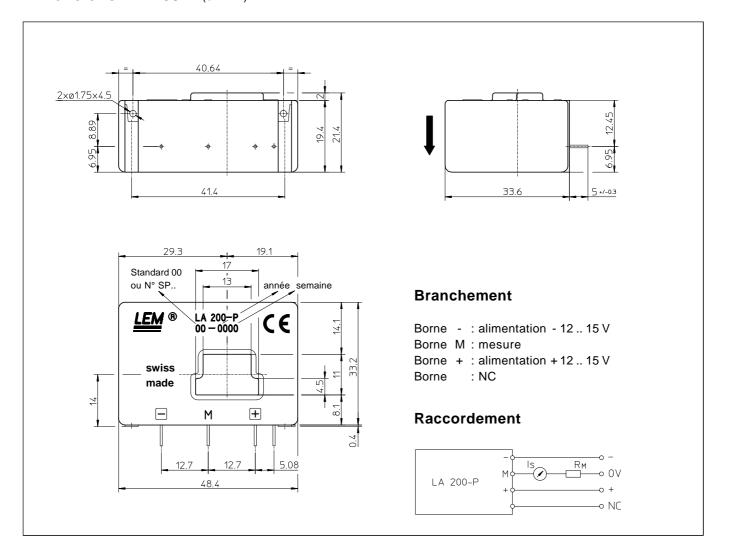
- Capteur de courant de type boucle fermée (à compensation) utilisant l'effet Hall
- Montage sur circuit imprimé
- Boîtier injecté en matière isolante auto-extinguible de classe UL 94-V0.

Avantages

%

 ± 0.40

- Excellente précision
- Très bonne linéarité
- Faible dérive en température
- Temps de retard court
- Bande passante élevée
- Pas de pertes d'insertion apportées dans le circuit à mesurer
- Grande immunité aux perturbations extérieures
- Surcharges de courant supportées sans dommage.


Applications

- Variateurs de vitesse et entraînements à servomoteur AC
- Convertisseurs statiques pour entraînements à moteur DC
- Applications alimentées par batteries
- Alimentations Sans Interruption (ASI)
- Alimentations à découpage
- Alimentations pour applications de soudage.

980729/6

Dimensions LA 200-P (en mm)

Caractéristiques mécaniques

- Tolérance générale
- Trou de passage primaire
- Fixation et connexion primaire

 \varnothing de perçage recommandé

Fixation supplémentaire
Ø de perçage recommandé
Vis recommandées
Code LEM

17 x 11 mm 4 picots 0.63 x 0.56 mm 0.9 mm 2 trous Ø 1.75 mm 2.4 mm KA 22 x 6 47.30.60.006.0

± 0.2 mm

Remarques générales

- I_s est positif lorsque I_s circule dans le sens de la flèche.
- La température du conducteur primaire ne doit pas dépasser 90°C
- Les performances dynamiques (temps de réaction et di/dt) sont optimales lorsque la barre primaire est située dans la position basse du trou de passage.
- Lorsque le circuit primaire est constitué d'une ou plusieurs spires, ces dernières seront bobinées autour de la partie supérieure du capteur afin d'entourer le dispositif de mesure de flux.
- Ce modèle est un type standard. Pour des caractéristiques ou exécutions différentes (tensions d'alimentation, rapports de transformation, mesure unidirectionnelle...), veuillez nous consulter.